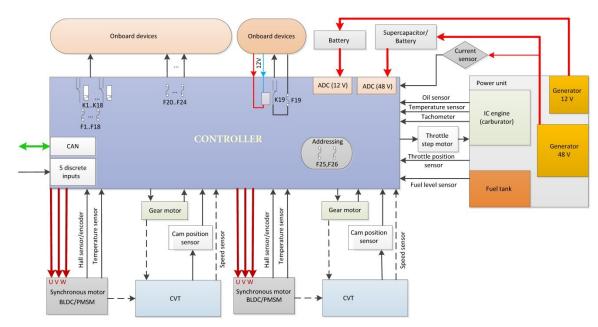

# Advanced System Design intEn two-channel hybrid/electric vehicle integrated controller




| 1   | DESCRIPTION                             | 3                 |
|-----|-----------------------------------------|-------------------|
| 2   | TECHNICAL PARAMETERS                    | <mark>5</mark>    |
| 3   | IN-LINE CONTROLLER ARCHITECTURE         | 7                 |
| 4   | IN-LINE CONTROLLER CONNECTION INTERFACE | 9                 |
| 4.1 |                                         |                   |
| 4.2 |                                         |                   |
| 4.3 |                                         |                   |
| 4.4 | 4 DIGITAL SERIAL INTERFACE              | <mark>.</mark> 19 |
| 5   | POSSIBLE APPLICATIONS                   |                   |
| 5.1 | 1 STANDARD APPLICATION                  | 20                |
| 5.2 |                                         |                   |
|     | DIMENSIONS                              |                   |
| 7   | APPEARANCE                              |                   |

### 1 Description

The controller represents an electronic module combining all functions that may be required to create control systems for hybrid vehicles or electric cars. Besides vehicle control systems, the controller can be used in any BLDC/PMSM based systems.

Picture 1 Shows devices attachable to the controller.



Pic. 1 Connected equipment.

The controller can be used for:

driving two three phase brushless electric motors (PMSM or BLDC) up to 15 kW each with digital (Hall sensor) or analog (encoder) position sensors;

controlling of two electronic CVTs;

 controlling power module consisting of a carburetor-type IC engine and a generator to provide configured battery voltage;

managing onboard equipment power with relays;

collecting and processing sensor data (electric motor and IC engine temperature, IC frequency, electric motorfrequency, wheel velocity, fuel level, generator amperage);
monitoring discrete signals from devices and sensors with open collector type

outputs.

The electric motor control algorithms allow configuring of wheel velocity and of maximum power consumption. Temperature sensors data processing allows controlling of temperature conditions of electric motors and controller to avoid overheating.

The controller allows expanding the electric motor dynamic range by means of an electrically controlled CVT. The CVT mechanism is driven by a brushed motor. Automatic regulation of the CVT gear ratio provides balance between the motor frequency and torque.

The power unit control function ensures optimal battery voltage by means of controlling the ICE throttle.

The onboard equipment power control is performed by means of easily replaceable automobile relays. To prevent short circuits and overcurrent each relay is protected with a fuse. Apart from controlled power outputs there are a few non-controlled outputs also protected with fuses. For the user convenience the system provides automatic fuse integrity check. Aside from controlled relays the controller includes one relay with external control.

Discrete inputs allow connecting and monitoring the condition of discrete sensors. The following sensors have discrete output:

- oil level sensor;
- throttle position sensor;
- engine oil pressure sensor;
- brake liquid sensor;
- service brake sensor;
- handbrake sensor;
- windscreen washer liquid sensor;

The controller is operated through CAN interface. It is recommended to use our front panel controller as board computer to operate the controllers.<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup> [see the Quote attached].

# 2 Technical parameters

The device has the following technical parameters and features:

Table. 1 Technical parameters

| Parameters                                 | Rating   |
|--------------------------------------------|----------|
| Controller supply voltage range            | 11,530 V |
| Supply current                             | ≤ 0,6 A  |
| Operating temperature range                | -40+55°C |
| Environmental protection                   | IP67     |
| CAN baud rate                              | 1 Mbps   |
| CAN differential output voltage (dominant) | 1,53,0 V |
| Dimensions:                                |          |
| -length                                    | 417,6 mm |
| -width                                     | 208 mm   |
| -height                                    | 120,5 mm |

#### табл. 2. Discrete inputs

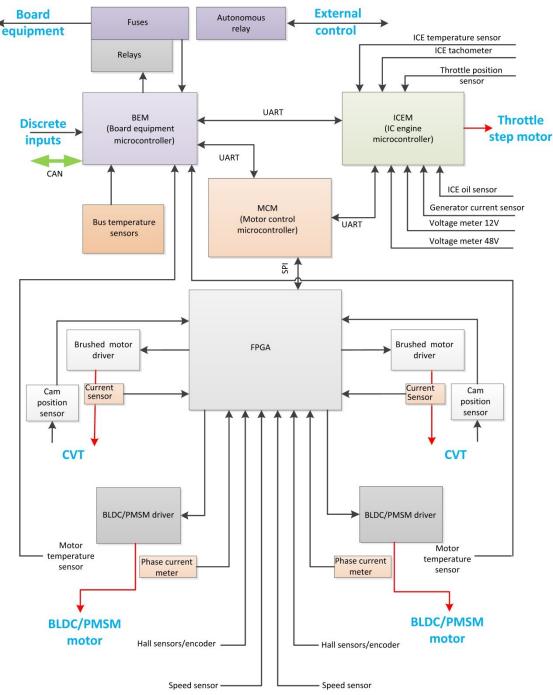
| Parameter                    | Rating  |
|------------------------------|---------|
| Maximum switching resistance | 500 Ohm |
| Minimum switching current    | 2 mA    |

#### Table 3. Power outputs

| Туре                            | Max current <sup>1</sup> , A | Quantity |
|---------------------------------|------------------------------|----------|
| Electronically controlled relay | 30                           | 4        |
|                                 | 20                           | 14       |
| External control relay          | 20                           | 1        |
| Non-controlled output           | -                            | 6        |

<sup>&</sup>lt;sup>1</sup> Max current values depend on fuses installed

| Table 4. Electric motors and equipment    |                     |  |  |  |
|-------------------------------------------|---------------------|--|--|--|
| Parameter                                 | Rating              |  |  |  |
| Max motor phase current (pulsed)          | 500 A               |  |  |  |
| Max current pulse time                    | 30 sec              |  |  |  |
| Max motor current (countinuous)           | 300 A               |  |  |  |
| Max motor continuous power                | 15000 W             |  |  |  |
| Battery voltage                           | 48±18 V             |  |  |  |
| Max throttle step motor phase current     | 2,5A                |  |  |  |
| Throttle step motor phase voltage range   | 8,212 V             |  |  |  |
| Brushed motor supply voltage              | U <sup>*</sup> -1 V |  |  |  |
| Max brushed motor current                 | 11A                 |  |  |  |
| Speed sensors supply voltage              | U*-0,7 V            |  |  |  |
| Max speed sensor supply current           | 100 mA              |  |  |  |
| CVT cam sensor supply voltage range       | 4,75 V              |  |  |  |
| CVT cam sensor input signal range         | 05 V                |  |  |  |
| Hall sensor/encoder supply voltage        | 4,75 V              |  |  |  |
| Hall sensor/encoder max supply current    | 50 mA               |  |  |  |
| Min Hall sensor switching current         | 7 mA                |  |  |  |
| Encoder signal input voltage range        | 05 V                |  |  |  |
| Motor temperature sensor resistance range | 505000 Ohm          |  |  |  |


Table 5. IC engine and generator sensors

| Parameter                                        | Rating     |
|--------------------------------------------------|------------|
| IC engine speed sensor voltage                   | Up to 25 V |
| Fuel sensor resistance range                     | 7350 Ohm   |
| Coolant temperature sensor resistance range      | 505000 Ohm |
| Generator current sensor supply voltage          | 9±1 V      |
| Max supply current for generator current sensor  | 50 mA      |
| Input voltage range for generator current sensor | 09 V       |

 $<sup>^{*}</sup>$  U – in-line controller power voltage

## 3 Controller architecture

Pic. 2 shows controller architecture.



Pic. 2 Controller architecture

The controller includes three microcontrollers connected via UART interface and one FPGA. The electric motors microcontroller is connected with FPGA through SPI interface, with the FPGA being a slave device . Each microcontroller performs its own function.

IC engine microcontroller operates the IC engine and maintains the configured values of battery voltage. Regulation of IC engine frequency and of battery voltage is performed by means of step motor that controls the air throttle position. Opening of the air throttle causes fuel injection increase and engine rpm enlargement while closure of

the air throttle gives the opposite effect. The air throttle regulation range is limited by the throttle position sensor. Beside this, the IC engine microcontroller performs monitoring of board and battery voltages, generator current, the IC engine temperature and frequency and discrete signal of ICE oil level.

The board device microcontroller's main function is to provide CAN interface of the controller and to control relays. The board device microcontroller also measures power bus temperature, checks fuse's integrity and discrete input's states.

The motor control microcontroller main function is to manage motors and CVTs. This microcontroller only calculates parameters and sends required data to FPGA. The FPGA performs collecting data from ADCs and generates timing diagrams for synchronous and brushed motors drivers.

#### 4 Connections

The controller has on its body 7 connectors for low-current circuits and power terminals for connecting electric motors and battery voltage. Please, see below the detailed information on the connector types and pin and terminals wiring information.

4.1 Pin definition

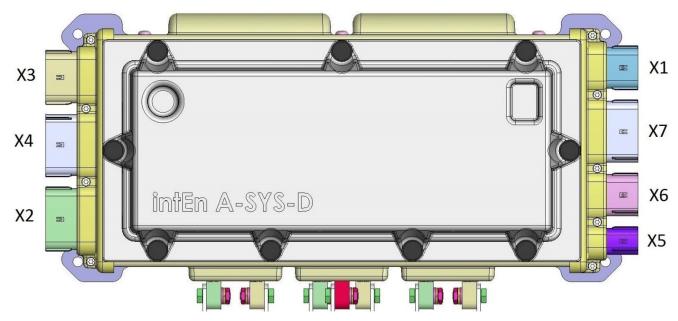



рис. З Интерфейс

The controller contains 7 MX150 series connectors produced by Molex. The table below specifies the connectors types and counterparts.

|           |            | Number of |                                     |
|-----------|------------|-----------|-------------------------------------|
| Ref. des. | Partnumber | positions | Counterpart (replacements)          |
| X1        | 33482-1201 | 12        | 33472-1201 (33472-1206, 33472-1211) |
| X2        | 33482-2101 | 20        | 33472-2101 (33472-2103, 33472-2104) |
| X3        | 33482-1601 | 16        | 33472-1601 (33472-1606, 33472-1621) |
| X4        | 33482-2102 | 20        | 33472-2102 (33472-2105, 33472-2123) |
| X5        | 33482-0602 | 6         | 33472-0602 (33472-0612, 33472-0617) |
| X6        | 33482-1202 | 12        | 33472-1202 (33472-1207, 33472-1212) |
| X7        | 33482-2102 | 20        | 33472-2102 (33472-2090, 33472-2121) |

Table 6 Pin types and counterparts

| Pin | Net    | Type   | Description                 |  |  |
|-----|--------|--------|-----------------------------|--|--|
| 1   | 12V    | Input  | Relay supply voltage (+12V) |  |  |
| 2   | K1_OUT | Output | K1 relay output             |  |  |
| 3   | K1_OUT | Output | K1 relay output             |  |  |
| 4   | K2_OUT | Output | K2 relay output             |  |  |
| 5   | K2_OUT | Output | K2 relay output             |  |  |
| 6   | K4_OUT | Output | K4 relay output             |  |  |
| 7   | K4_OUT | Output | K4 relay output K           |  |  |
| 8   | 12V    | Input  | Relay supply voltage (+12V) |  |  |
| 9   | K3_OUT | Output | K3 relay output K3          |  |  |
| 10  | K3_OUT | Output | K3 relay output K3          |  |  |
| 11  | -      | -      | Not used                    |  |  |
| 12  | _      | -      | Not used                    |  |  |

## Tale 7 Pin definition of X1

#### Table 8 Pin definition of X2

| Pin | Net      | Type   | Description                                |
|-----|----------|--------|--------------------------------------------|
| 1   | 12V      | Input  | Relay supply voltage (+12V)                |
| 2   | K7_OUT   | Output | K7 relay output                            |
| 3   | K8_OUT   | Output | K8 relay output                            |
| 4   | 12V      | Input  | Relay supply voltage (+12V)                |
| 5   | K11_OUT  | Output | K11 relay output                           |
| 6   | K12_OUT  | Output | K12 relay output                           |
| 7   | 12V      | Input  | Relay supply voltage (+12 voltage)         |
| 8   | K15_OUT  | Output | K15 relay output                           |
| 9   | K16_OUT  | Output | K16 relay output                           |
| 10  | 12V      | Input  | Relay supply voltage (+12V)                |
| 11  | K18_OUT  | Output | K18 relay supply                           |
| 12  | F22_OUT  | Output | F22 fuse output                            |
| 13  | 12V      | Input  | Relay supply voltage (+12V)                |
| 14  | F23_OUT  | Output | F23 fuse output                            |
| 15  | F24_OUT  | Output | F24 fuse output                            |
| 16  | K19_UPR+ | Input  | Autonomous relay control (+)               |
| 17  | K19_UPR- | Input  | Autonomous relay control (-)               |
| 18  | K19_NC   | Output | Autonomous relay (normally closed contact) |
| 19  | K19_NO   | Output | Autonomous relay (normally open contact)   |
| 20  | K19_COM  | Input  | Autonomous relay (common contact)          |

| Pin | Net     | Type   | Description                 |
|-----|---------|--------|-----------------------------|
| 1   | 12V     | Input  | Relay supply voltage (+12V) |
| 2   | K5_OUT  | Output | K5 relay output             |
| 3   | K6_OUT  | Output | K6 relay output             |
| 4   | 12V     | Input  | Relay supply voltage (+12V) |
| 5   | K9_OUT  | Output | K9 relay output             |
| 6   | K10_OUT | Output | K10 relay output            |
| 7   | 12V     | Input  | Relay supply voltage (+12V) |
| 8   | K13_OUT | Output | K13 relay output            |
| 9   | K14_OUT | Output | K14 relay output            |
| 10  | 12V     | Input  | Relay supply voltage (+12V) |
| 11  | K17_OUT | Output | K17 relay output            |
| 12  | F19_OUT | Output | F19 fuse output             |
| 13  | 12V     | Input  | Relay supply voltage (+12V) |
| 14  | F20_OUT | Output | F20 fuse output             |
| 15  | F21_OUT | Output | F21 fuse output             |
| 16  | GEN     | Output | Generator excitation (12 V) |

#### Table 9 Pin definition of X3

#### Table 10 Pin definition of X4

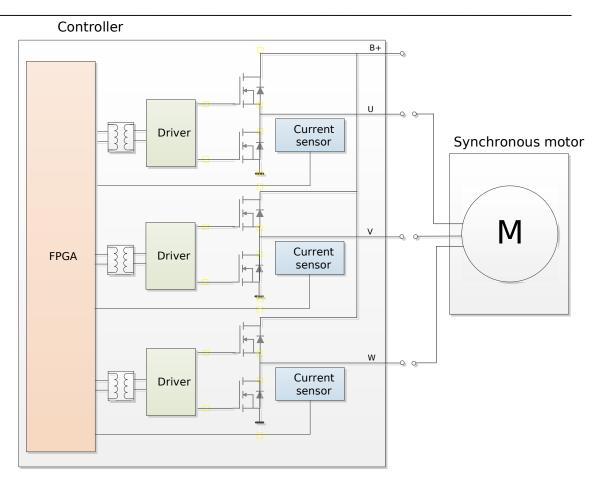
| Pin        | Net                   | Туре         | Description                     |  |
|------------|-----------------------|--------------|---------------------------------|--|
| 1          | 12V                   | Input        | Supply voltage input            |  |
| 2          | DESCR IN0             | Input        | Throttle position sensor input  |  |
| 3          | DESCR IN1             | Input        | Discrete input 1                |  |
| 4          | DESCR IN2             | Input        | Discrete input 2                |  |
| 5          | DESCR IN3             | Input        | Discrete input 3                |  |
| 6          | DESCR IN4             | Input        | Discrete input 4                |  |
| 7          | DESCR IN5             | Input        | Discrete input 5                |  |
| 8          | Temp+                 | Input        | ICE temperature sensor input    |  |
| 9 L- Analo |                       | Analog input | ICE frequency sensor input (-)  |  |
| 10         | L GND                 | Shared       | ICE frequency sensor shielding  |  |
| 11         | 11 L+ Analog input    |              | ICE frequency sensor input (+)  |  |
| 12         | 12 Fuel+ Analog input |              | Fuel level sensor input         |  |
| 13         | 13 Fuel- (GND) Common |              | Oil level sensor common         |  |
| 14         | 9V                    | Output       | Generator current sensor supply |  |
| 15         | Curr sens             | Analog input | Generator current sensor input  |  |
| 16         | GND                   | Shared       | Generator current sensor common |  |
| 17         | A+                    | Output       | Throttle step motor. Phase A+   |  |
| 18         | A-                    | Output       | Throttle step motor. Phase A-   |  |
| 19         | B+                    | Output       | Throttle step motor. Phase B+   |  |
| 20         | B-                    | Output       | Throttle step motor. Phase B+   |  |

| Pin | Net     | Туре         | Description      |
|-----|---------|--------------|------------------|
| 1   | CAN GND | Common       | CAN bus (common) |
| 2   | CAN -   | Input-output | CAN bus -        |
| 3   | CAN +   | Input-output | CAN bus +        |
| 4   | CAN +   | Input-output | CAN bus +        |
| 5   | CAN -   | Input-output | CAN bus -        |
| 6   | CAN GND | Commn        | CAN bus (common) |

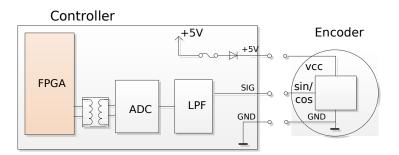
#### Table 12 Pin definition of X6

| Pin<br>Connector<br>№ | NetConnector<br>marking | Туре                    | Description                                      |
|-----------------------|-------------------------|-------------------------|--------------------------------------------------|
| 1                     | HALL 5V                 | Output                  | Halls sensor supply (5 V)                        |
| 2                     | HALL U1/SIN             | Input / Analog<br>input | Motor 1 Hall sensor U /encoder sin channel       |
| 3                     | HALL V1/COS             | Input / Analog<br>input | Motor 1 Hall sensor V/ encoder cos channel       |
| 4                     | HALL W1                 | Input                   | Motor 1 Hall sensor Wchannel                     |
| 5                     | Temp M1+                | Input                   | Motor 1 temperature sensor input                 |
| 6                     | HALL GND                | Common                  | Hall sensor supply (common)                      |
| 7                     | HALL 5V                 | Output                  | Hall sensor supply (5 V)                         |
| 8                     | HALL U2/SIN             | Input / Analog<br>input | Motor 2 Hall sensor U/encoder sin channel        |
| 9                     | HALL V2/COS             | Input / Analog<br>input | Motor 2 Hall sensor input V/ encoder cos channel |
| 10                    | HALL W2                 | Input                   | Motor 2 Hall sensor Wchannel                     |
| 11                    | Temp M2+                | Input                   | Motor 2 temperature sensor input                 |
| 12                    | HALL GND                | Common                  | Hall sensor supply (common)                      |

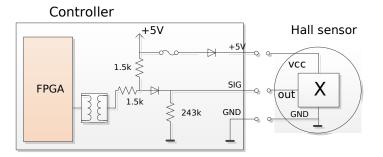
| Pin<br>Connector<br>№ | NetConnector<br>marking | Туре   | Description                               |
|-----------------------|-------------------------|--------|-------------------------------------------|
| 1                     | M1+                     | Output | CVT DC motor 1. Phase +                   |
| 2                     | M1-                     | Output | CVT DC motor 1. Phase -                   |
| 3                     | 12V                     | Output | CVT DC motor supply (12 V)                |
| 4                     | M2+                     | Output | CVT DC motor 2. Phase +                   |
| 5                     | M2-                     | Output | CVT DC motor 2. Phase -                   |
| 6                     | L1                      | Input  | CVT speed sensor 1 signal                 |
| 7                     | 12V_L1                  | Output | CVT speed sensor 1 supply (12 V)          |
| 8                     | L2                      | Input  | CVT speed sensor 1 signal                 |
| 9                     | 12V_L2                  | Output | CVT speed sensor 1 supply (12 V)          |
| 10                    | VAR_5V_1                | Output | CVT cam position sensor 1 supply (5 V)    |
| 11                    | VAR_SIG_1               | Input  | CVT cam position sensor 1 signal          |
| 12                    | VAR_GND_1               | Common | CVT cam position sensor 1 supply (common) |
| 13                    | VAR_5V_2                | Output | CVT cam position sensor2 supply (5 V)     |
| 14                    | VAR_SIG_2               | Input  | CVT cam position sensor 2 signal          |
| 15                    | VAR_GND_2               | Common | CVT cam position sensor 2 supply (common) |
| 16                    | -                       | -      | Not used                                  |
| 17                    | -                       | -      | Not used                                  |
| 18                    | -                       | -      | Not used                                  |
| 19                    | -                       | -      | Not used                                  |
| 20                    | -                       | -      | Not used                                  |


Tale 13 Pin definition of X7

#### 4.2 Sensors and devices


Please, see below the detailed range of devices that may be connected to the controller.

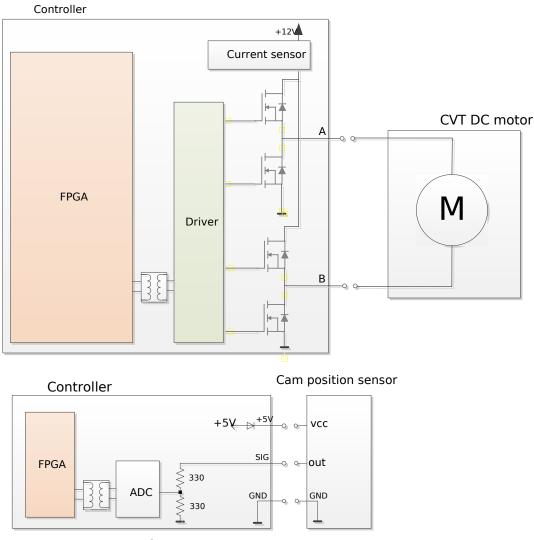
#### Electric motors


Two BLDC or PMS motors (option is specified when ordering). Electric motors can be controlled by means of Hall sensors or encoders (option is specified when ordering). Motor power control is based on the phase current and battery voltage measurements. Picture 4 represents the structural scheme of synchronous motor driver channel. Pictures 5 and 6 show the motor positioning sensor connection.



#### Picture 4 Synchronous motors connection



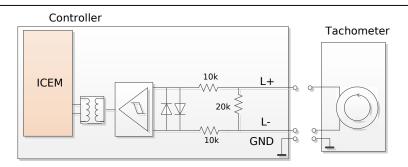

#### Picture 5 Encoder connection



Picture 6 Hall sensor connection

#### Electronic CVT

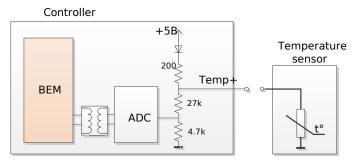
The CVT is used for expanding synchronous motors dynamic range. An electronic CVT is controlled by means of DC brushed motor (CVT DC motor). Taking into account the CVT construction peculiarities, it is necessary to control the cam passing of phase points by means of cam position sensor connected to the corresponding controller input.




Picture 7 Connecting of CVT DC motor and cam position sensor

#### □ <u>IC engine frequency sensor</u>

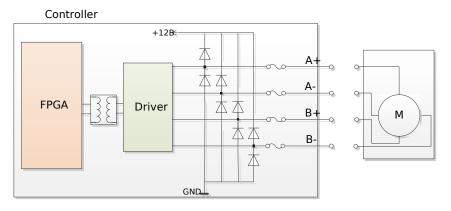
It is necessary to control the IC engine work and to maintain idle speed for no load condition by means of analog tachometer.


Π



Picture 8 Connection of IC engine tachometer

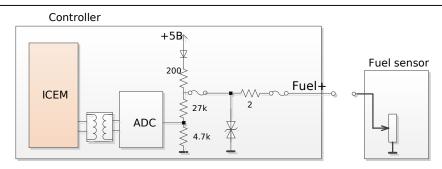
#### Temperature sensor


To control the engine and electric motor temperature in the working condition resistive temperature sensors are connected to the controller (see table 5, picture 9)



Picture 9 Connection of resistive temperature sensor

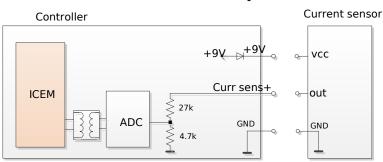
#### **Throttle stepmotor**


The picture below shows the structure of throttle step motor driver.



Picture 10 Connection of throttle step motor

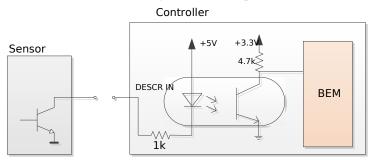
#### <u>Fuel level sensor</u>


To estimate fuel level a potentiometeric sensor can be connected to the controller. To avoid ignition the spark protection is used. See the sensor connection in the picture below.



Picture 11 Connection of fuel level sensor

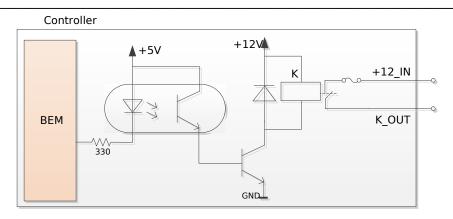
#### Current sensor


Generator current is monitored by the current sensor shown in the picture below.



Picture 12 Connection of generator current sensor

#### Discrete inputs


Discrete inputs serve for connection of sensors with "open collector" type outputs. The structural scheme of input is shown in the picture 13. Input and output parameters of sensors connected to the system are specified in table 2.



Picture 13 Open collector output and discrete input

#### Board equipment

A set of relays and fuses is provided to control power supply of the onboard equipment. Controller includes two types of relays(see table 2). For high loads (driving beams) high current relays are recommended



Picture 14 Connection of board equipment to the controller relay

#### 4.3 Power terminals

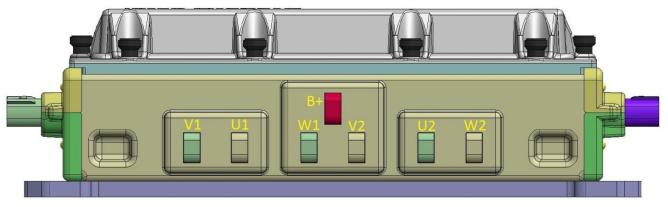
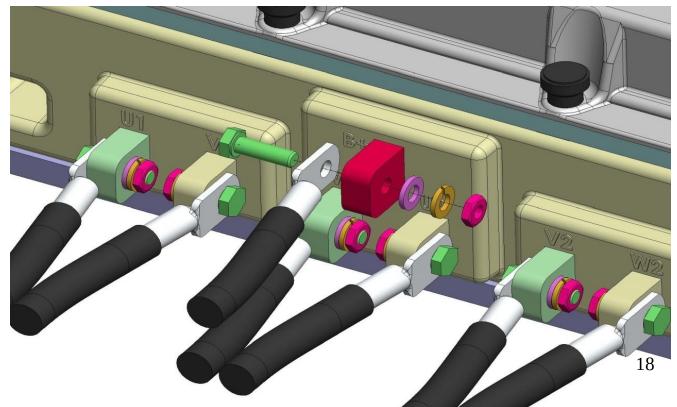
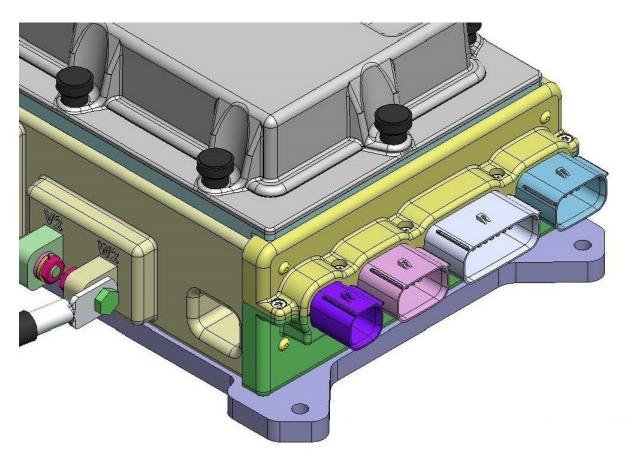




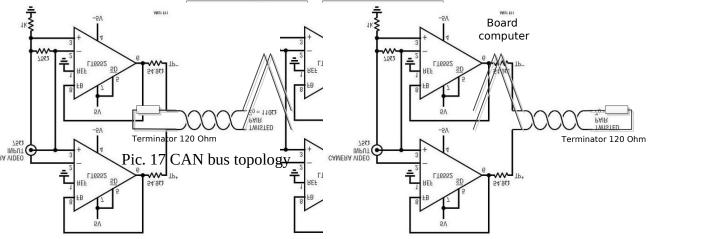

рис. 15 Power terminals view

Phases of motor 1 and 2 should be connected to terminals U1, V1, W1 and U2, V2, W2 respectively . Terminal B+ serves as a common battery power supply input for both electric motors. Power supply and motor phases are connected to power terminals by means of bolt-nut connection. (pic.16).





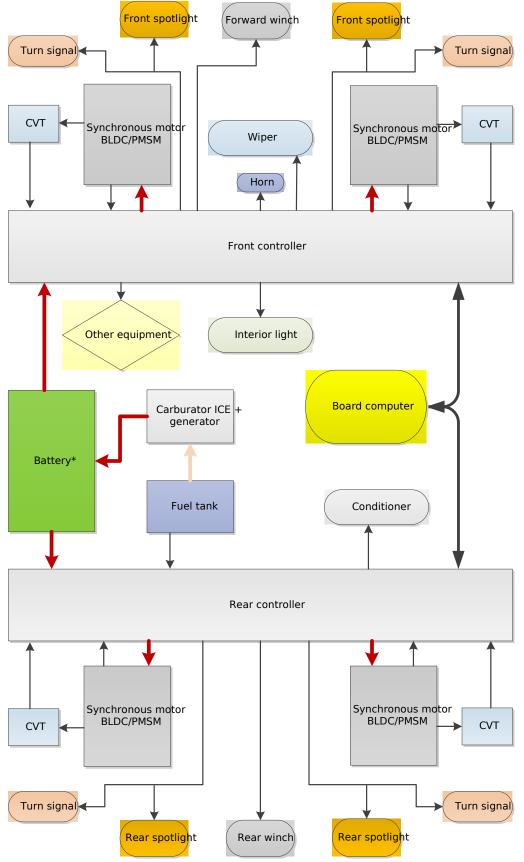
Pic. 16 Connection of power terminals


The controller bed plate is used for commutating board voltage source and battery common terminals. The bed plate also serves as a heat sink. To normalize thermal condition of the in-line controller the bed plate should be installed onto a heatsink or any other massive element of the construction to provide heat dissipation.

#### 4.4 CAN interface

Digital serial interface CAN is used for managing the controller and monitoring the system parameters. The controller and the board computer are connected via differential line with the linear bus topology. Data transfer is performed in the form of frames fully compatible with CAN2.0A standard.

The controllers have two CAN line inputs in X5 connector (see table 11) for connecting them in a 'daisy chain' arrangement(pic. 17). The controller address is configured through address fuses..

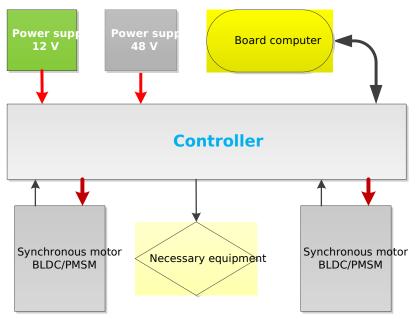

19



# 5 Possible applications

## 5.1 Typical application

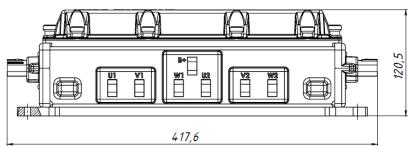
Picture 18 shows typical structure of all-wheel drive vehicle control system.

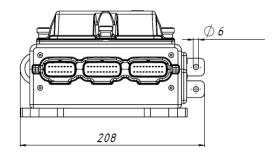


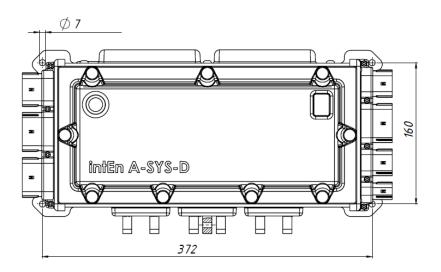

Pic. 18 Possible arrangement scheme

\* To buffer the generator voltage it is recommended to use an supercapacitor with 20F capacity.

The scheme below shows two controllers – the front and the rear controllers which are identical in the functions performed.


#### 5.2 Minimal configuration

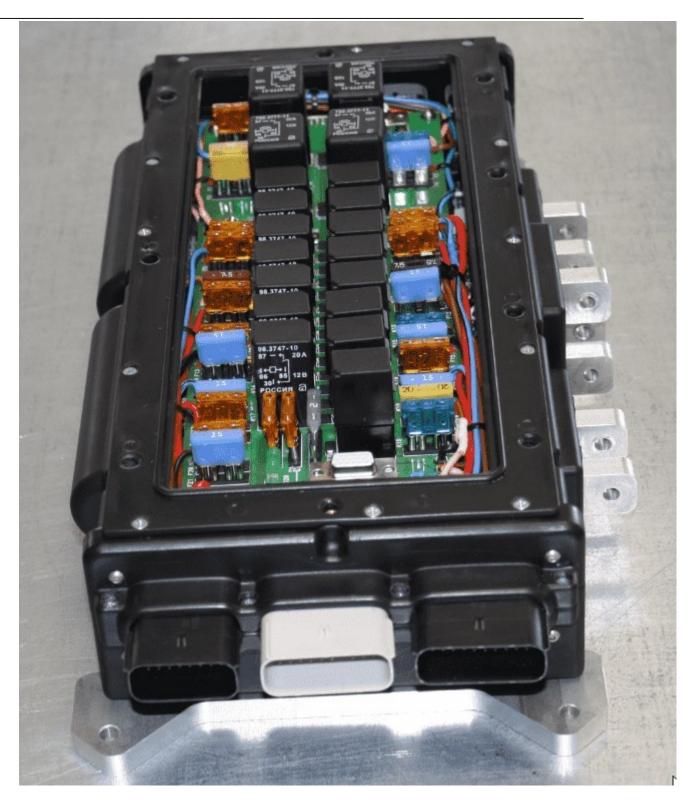


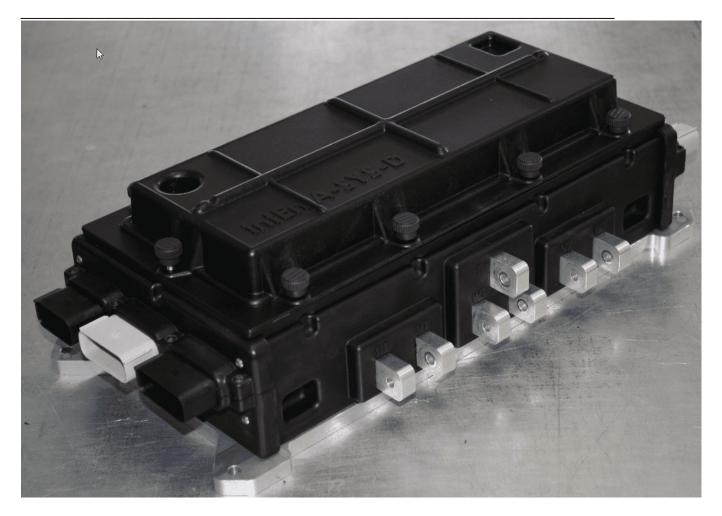


Pic. 19 Application of controller for the minimal configuration

Picture 19 represents minimal equipment configuration with one controller and two synchronous motors. The controller is connected to the power supply giving the necessary voltage for the controller and the motors. The controller is operated via a board computer.

# 6 Dimensions






# 7 Appearance







